The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis.
نویسندگان
چکیده
Lipoprotein processing by the type II signal peptidase (SPase II) is known to be critical for intracellular growth and virulence for many bacteria, but its role in rickettsiae is unknown. Here, we describe the analysis of lspA, encoding a putative SPase II, an essential component of lipoprotein processing in gram-negative bacteria, from Rickettsia typhi. Alignment of deduced amino acid sequences shows the presence of highly conserved residues and domains that are essential for SPase II activity in lipoprotein processing. The transcription of lspA, lgt (encoding prolipoprotein transferase), and lepB (encoding type I signal peptidase), monitored by real-time quantitative reverse transcription-PCR, reveals a differential expression pattern during various stages of rickettsial intracellular growth. The higher transcriptional level of all three genes at the preinfection time point indicates that only live and metabolically active rickettsiae are capable of infection and inducing host cell phagocytosis. lspA and lgt, which are involved in lipoprotein processing, show similar levels of expression. However, lepB, which is involved in nonlipoprotein secretion, shows a higher level of expression, suggesting that LepB is the major signal peptidase for protein secretion and supporting our in silico prediction that out of 89 secretory proteins, only 14 are lipoproteins. Overexpression of R. typhi lspA in Escherichia coli confers increased globomycin resistance, indicating its function as SPase II. In genetic complementation, recombinant lspA from R. typhi significantly restores the growth of temperature-sensitive E. coli Y815 at the nonpermissive temperature, supporting its biological activity as SPase II in prolipoprotein processing.
منابع مشابه
Molecular and functional analysis of the lepB gene, encoding a type I signal peptidase from Rickettsia rickettsii and Rickettsia typhi.
The type I signal peptidase lepB genes from Rickettsia rickettsii and Rickettsia typhi, the etiologic agents of Rocky Mountain spotted fever and murine typhus, respectively, were cloned and characterized. Sequence analysis of the cloned lepB genes from R. rickettsii and R. typhi shows open reading frames of 801 and 795 nucleotides, respectively. Alignment analysis of the deduced amino acid sequ...
متن کاملCharacterization of Sec-translocon-dependent extracytoplasmic proteins of Rickettsia typhi.
As obligate intracellular, vector-borne bacteria, rickettsiae must adapt to both mammalian and arthropod host cell environments. Deciphering the molecular mechanisms of the interactions between rickettsiae and their host cells has largely been hindered by the genetic intractability of these organisms; however, research in other gram-negative pathogens has demonstrated that many bacterial determ...
متن کاملFunctional characterization of a phospholipase A(2) homolog from Rickettsia typhi.
Phospholipase A(2) (PLA(2)) has long been proposed to be involved in rickettsial entry into host cells, escape from the phagosome to evade destruction by lysosomal exposure, and lysis of the host cells. However, the corresponding rickettsial gene(s) encoding a protein with PLA(2) activity has not been identified or functionally characterized. Here, we report that the Rickettsia typhi genome pos...
متن کاملNucleotide sequence of the lspA gene, the structural gene for lipoprotein signal peptidase of Escherichia coli.
The nucleotide sequence of the lspA gene coding for lipoprotein signal peptidase of Escherichia coli was determined and the amino acid sequence of the peptidase was deduced from it. The molecular mass and amino acid composition of the predicted lipoprotein signal peptidase were consistent with those of the signal peptidase purified from cells harboring the lspA gene-carrying plasmid. The peptid...
متن کاملMyxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase.
Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 189 2 شماره
صفحات -
تاریخ انتشار 2007